If a vector P making an angle α, β and γ respectively with the . . .

Question : If a vector P making an angle α, β and γ respectively with the x, y and z axes respectively then sin2α + sin2β + sin2γ = 

Doubt by Muskan

Solution :

When we resolve the vector A in Three dimensions such that vector A makes angle α, β and γ respectively with the x, y and z axes respectively then

Ax = Acosα — (1)
Py = Acosβ — (2)
Az = Acosγ — (3)
 

Squaring and adding the above equations

Ax2+Ay2+Az2 = A2cos2α+A2cos2β+A2cos2γ

A2 = A2[cos2α+cos2β+cos2γ]
[∵A=√(Ax2+Ay2+Az2)
So A2=Ax2+Ay2+Az2]
1 = cos2α+cos2β+cos2γ

cos2α+cos2β+cos2γ = 1

Here cosα, cosβ and cosγ are called the direction cosines of vector P.



Now,

We know,
cos2α+cos2β+cos2γ = 1
1-sin2α + 1- sin2β + 1-sin2γ =1
[∵ cos2θ=1-sin2θ]
3-1= sin2α + sin2β + sin2γ
2 = sin2α + sin2β + sin2γ

Hence, sin2α + sin2β + sin2γ = 2