a) 90°
b) 45°
c) 30°
d) 0°
Doubt by Muskan
Solution :
p(t) = A[icos(kt)-jsin(kt)] — (1)
We know
F = dp/dt
F = d{A[icos(kt)-jsin(kt)]}/dt
F = A[-iksin(kt)-jksin(kt)]
F = Ak[-isin(kt)-jsin(kt)] — (2)
Now, multiplying eq (1) and eq (2) by dot product.
F.p
= {Ak[-isin(kt)-jsin(kt)]}.{A[icos(kt)-jsin(kt)]}
= kA²[-sin(kt) cos(kt) + sin(kt) cos(kt)]
= kA²[0]
=0
=0
∵F.p = 0
It means FδΈ„ p
so, angle between F and p is 90°.
so, angle between F and p is 90°.
Hence, a) would be the correct option.