Question : The relation between time t and distance x is t=αx2+βx where α and β are constants. Find velocity and acceleration.
Doubt by Zoha
Solution :
t=αx2+βx
differentiating both sides w.r.t. x
d(t)/dt = d(αx2+βx)/dt
1=d(αx2)/dt+d(βx)/dt
1=2αx(dx/dt)+β(dx/dt)
1=2αxv+βv [∵dx/dt=v]
1=(2αx+β)v
v=1/2αx+β — (1)
v=(2αx+β)-1
Again differentiating w.r.t. time both sides
dv/dt = (-1)(2αx+β)-2×d(2αx+β)/dt
a = -(2αx+β)-2×[2α(dx/dt)+0]
a = -(2αx+β)-2×[2αv]
a = -2αv/(2αx+β)2
a = -2αv×[1/2αx+β]2
a = -2αv×[v]2 [From equation (1)]
a = -2αv3
a) 2bv³
b) -2abv²
c) 2av²
d) -2av³