The angle between the z-axis and the vector i+j+√2k is . . .

Question : The angle between the z-axis and the vector i+j+√2k is 

a) 30°
b) 45°
c) 60°
d) 90°

Doubt by Avani

Solution : 

We know, angle made by a vector with x-axis, y-axis and z-axis are α, β and γ which are given by 
cos
α = Ax/A
cosβ = Ay/A
cosγ = Az/A


i+j+√2k
Here
Ax=1
Ay=1
Az=√2

A = √[(1)²+(1)²+(√2)²]
A = √[1+1+2]
A = √[4]
A = 2

cosγ = Az/A

cosγ = √2/2
cosγ = 1/√2

cosγ = cos45°

γ = 45°

Hence, b) 45° would be the correct option. 

Alternate Method 

Let 
A = i+j+√2k
B = 0i+0j+k (Vector Along the z-axis)

A.B = (i+j+√2k).(0i+0j+k)
A.B = (1)(0)+(1)(0)+(√2)(1)
A.B = √2

A = √[(1)²+(1)²+(√2)²]
A = √[1+1+2]
A = √[4]
A = 2

B = 1

We know, 
cos
θ = A.B/AB
cosθ = √2 / [(2)(1)]
cosθ = √2/2
cosθ = 1/√2
cosθ = cos
45°
Hence, b) 45° would be the correct option. 

Similar Question : 

If P=4i-2j+6k and Q=i-2j-3k, then the angle which P+Q makes with x-axis is 

a) cos-1[3/√50]
b) cos-1[4/√50]
c) cos-1[5/√50]
d) cos-1[12/√50]
Ans : c) 
cos-1[5/√50]