Doubt by Suhani
Solution :
ꞵ=90°
ꞵ=90°
R=A
B=A√n
B=A√n
We know,
tanꞵ=Asinθ/(A+Bcosθ)
tanꞵ=Asinθ/(A+Bcosθ)
tan90°=Asinθ/(A+A√ncosθ) [∵ꞵ=90°, B=A√n]
1/0= Asinθ/[A(1+√ncosθ)]
1/0=sinθ/(1+√ncosθ)
1+√ncosθ =0
√ncosθ =-1
cosθ = -1/√n
1/0= Asinθ/[A(1+√ncosθ)]
1/0=sinθ/(1+√ncosθ)
1+√ncosθ =0
√ncosθ =-1
cosθ = -1/√n
Now
R²=A²+B²+2ABcosθ
A²=A²+(A√n)²+2A(A√n)cosθ [∵B=A√n]
A²=A²+A²n+2A²√n(-1/√n] [∵cosθ = -1/√n]
A²=A²+A²n-2A²
A²=A²n-A²
A²+A²=A²n
2A²=A²n
2A²/A²=n
2=n
n=2
A²=A²+A²n-2A²
A²=A²n-A²
A²+A²=A²n
2A²=A²n
2A²/A²=n
2=n
n=2
Hence, the value of n is 2.
Similar Question :
The resultant of two vectors A and B is perpendicular to the vector A and its magnitude is equal to half the magnitude of vector B. The angle between A and B is
The resultant of two vectors A and B is perpendicular to the vector A and its magnitude is equal to half the magnitude of vector B. The angle between A and B is
a) 120°
b) 150°
c) 135°
d) 180°