A body is projected with a velocity of 40 m/s . . .

Question : A body is projected with a velocity of 40 m/s. After 2 sec it crosses a vertical pole of height 20.4 m. Calculate the angle of projection and horizontal range. 


Doubt by Aakarsh

Solution : 
Initial velocity (u) = 40 m/s
At t = 2sec
Vertical Distance Covered (y) = 20.4 m
We know, 
uy=usinθ

Using Equation
S=ut+½at²
y=uy(t)+
½(-g)t²
20.4=
usinθ(2)-½(9.8)(2)² [∵uy=ucosθ]
20.4=40sin
θ(2)-(9.8)(2)
20.4=80sin
θ-19.6
20.4+19.6=80sin
θ
40=
80sinθ
40/80=sin
θ
1/2=sinθ
sin30
°=cosθ
θ=30°

Horizontal Range
=u²sin2(
θ)/g
=(40)²sin2(
30°)/9.8
=1600sin6
0°/9.8
=1600(√3/2) / 9.8
= 800√3/9.8
= 141.39 m

Hence, the angle of projection is 30° and Horizontal Range is 141.39 m.