(a) 30°
(b) 60°
(c) 90°
(d) 120°
Doubt by Mouli
[JEE Mains 2019]
Solution :
Case I
P=2F
Q=3F
R=R
We know,
R²=P²+Q²+2PQcosθ
R²=(2F)²+(3F)²+2(2F)(3F)cosθ
R²=4F²+9F²+12F²cosθ — (1)
Case II
P=2F
Q=2(3F) = 6F
R=2R
We know,
R²=P²+Q²+2PQcosθ
(2R)²=(2F)²+(6F)²+2(2F)(6F)cosθ
4R²=4F²+36F²+24F²cosθ — (2)
4[4F²+9F²+12F²cosθ]=4F²+36F²+24F²cosθ
Substituting the value of R² from equation (1)
Case I
P=2F
Q=3F
R=R
We know,
R²=P²+Q²+2PQcosθ
R²=(2F)²+(3F)²+2(2F)(3F)cosθ
R²=4F²+9F²+12F²cosθ — (1)
Case II
P=2F
Q=2(3F) = 6F
R=2R
We know,
R²=P²+Q²+2PQcosθ
(2R)²=(2F)²+(6F)²+2(2F)(6F)cosθ
4R²=4F²+36F²+24F²cosθ — (2)
4[4F²+9F²+12F²cosθ]=4F²+36F²+24F²cosθ
Substituting the value of R² from equation (1)
16F²+36F²+48F²cosθ=4F²+36F²+24F²cosθ
52F²+48F²cosθ=40F²+24F²cosθ
48F²cosθ-24F²cosθ=40F²-52F²
24F²cosθ=-12F²
cosθ=-12F²/24F²
cosθ=-1/2
cosθ=cos120°
θ=120°
52F²+48F²cosθ=40F²+24F²cosθ
48F²cosθ-24F²cosθ=40F²-52F²
24F²cosθ=-12F²
cosθ=-12F²/24F²
cosθ=-1/2
cosθ=cos120°
θ=120°
Hence, (d) 120°, would be the correct option.