A particle is subjected to two simple harmonic motions in the same direction having . . .

Question : A particle is subjected to two simple harmonic motions in the same direction having equal magnitude and equal frequency. If the resultant amplitude is equal to the amplitude of the individual motion. Find the phase difference between two individual motions.


Doubt by Dev

Solution : 

Let us represent the two SHM by following two equations of motion

x1=a1cosωt
x2=a2cos(ωt+Φ)

where
x1 & xare the displacement of the particle during the two SHM at any time t 
a1 & a2 are the amplitude of the particles during two SHM
Φ is the constant phase difference between the two SHM

According to superposition principle 
x=x1+x2
x=a1cosωt+a2cos(ωt+Φ)
[
∵ cos(A+B) = cosA cosB - sinA sinB ]
x=a1cosωt+a2(cosωt cosΦ - sinωt sinΦ)
x=a1cosωt+a2cosωt cosΦ - a2sinωt sinΦ
x=(a1+a2cosΦ) cosωt - (a2sinΦ) sinωt

Let 
a1+a2cosΦ = A cosθ --------(1)
a2sinΦ = A sinθ --------(2)

where A is the resultant amplitude and θ is the resultant phase angle w.r.t. first SHM.

x = 
A cosθ cosωt - A sinθ sinωt
x = A[cosθ cosωt - sinθ sinωt]
x = A[cos(θ+ωt)]
[∵ cosA cosB - sinA sinB = cos(A+B)]
x = A[cos(ωt+θ)]

Now, squaring and adding eq (1) and (2)
(a1+a2cosΦ)2 + (a2sinΦ)2 = (A cosθ)2  + (A sinθ)
a12+a22cos2Φ+2a1a2cosΦ + a22sin2Φ = A2cos2θ + A2sin2θ
a12+a22(sin2
Φ+cos2Φ)+2a1a2cosΦ = A2(sin2θ+cos2θ)
[∵ sin2θ+cos2θ=1]
a12+a22+2a1a2cosΦ = A2
A
a12+a22+2a1a2cosΦ
A = √(
a12+a22+2a1a2cosΦ)

According to Question 

A = a1 = a2 = a (let)
a = √(a2+a2+2×a×acosΦ )
a2 = 2a2+2a2cosΦ 
a2 = 2a2(1+cosΦ)
1 = 2 (1+cosΦ)
1/2 = 1+cosΦ 
1/2-1 =cosΦ 
-1/2 = cosΦ 
cos2π/3 = cosΦ 
Φ = 2π/3 radian.
Therefore, required phase difference is 2π/3 radian.